首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
  国内免费   2篇
测绘学   5篇
大气科学   20篇
地球物理   17篇
地质学   29篇
海洋学   9篇
天文学   13篇
综合类   2篇
自然地理   6篇
  2023年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   13篇
  2010年   5篇
  2009年   6篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1914年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
41.
The sensitivity of East African rift lakes to climate fluctuations   总被引:1,自引:0,他引:1  
Sequences of paleo-shorelines and the deposits of rift lakes are used to reconstruct past climate changes in East Africa. These recorders of hydrological changes in the Rift Valley indicate extreme lake-level variations on the order of tens to hundreds of meters during the last 20,000 years. Lake-balance and climate modeling results, on the other hand, suggest relatively moderate changes in the precipitation-evaporation balance during that time interval. What could cause such a disparity? We investigated the physical characteristics and hydrology of lake basins to resolve this difference. Nine closed-basin lakes, Ziway-Shalla, Awassa, Turkana, Suguta, Baringo-Bogoria, Nakuru-Elmenteita, Naivasha, Magadi-Natron, Manyara, and open-basin Lake Victoria in the eastern branch of the East African Rift System (EARS) were used for this study. We created a classification scheme of lake response to climate based on empirical measures of topography (hypsometric integral) and climate (aridity index). With reference to early Holocene lake levels, we found that lakes in the crest of the Ethiopian and Kenyan domes were most sensitive to recording regional climatic shifts. Their hypsometric values fall between 0.23–0.29, in a graben-shaped basin, and their aridity index is above unity (humid). Of the ten lakes, three lakes in the EARS are sensitive lakes: Naivasha (HI = 0.23, AI = 1.20) in the Kenya Rift, Awassa (HI = 0.23, AI = 1.03) and Ziway-Shalla (HI = 0.23, AI = 1.33) in the Main Ethiopian Rift (Main Ethiopian Rift). Two lakes have the graben shape, but lower aridity indices, and thus Lakes Suguta (HI = 0.29, AI = 0.43) and Nakuru-Elmenteita (HI = 0.30, AI = 0.85) are most sensitive to local climate changes. Though relatively shallow and slightly alkaline today, they fluctuated by four to ten times the modern water depth during the last 20,000 years. Five of the study lakes are pan-shaped and experienced lower magnitudes of lake level change during the same time period. Understanding the sensitivity of these lakes is critical in establishing the timing or synchronicity of regional-scale events or trends and predicting future hydrological variations in the wake of global climate changes.  相似文献   
42.
Recent observations show that the measured rates of star formation in the early universe are insufficient to produce re-ionization, and therefore, another source of ionizing photons is required. In this Letter, we examine the possibility that these can be supplied by the fast accretion shocks formed around the cores of the most massive haloes (10.5<log M/M <12) on spatial scales of order 1 kpc. We model the detailed physics of these fast accretion shocks, and apply these to a simple 1-D spherical hydrodynamic accretion model for baryonic infall in dark matter halos with an Einasto density distribution. The escape of UV photons from these halos is delayed by the time taken to reach the critical accretion shock velocity for escape of UV photons; 220 km s−1, and by the time it takes for these photons to ionize the surrounding baryonic matter in the accretion flow. Assuming that in the universe at large the baryonic matter tracks the dark matter, we can estimate the epoch of re-ionization in the case that accretion shocks act alone as the source of UV photons. We find that 50% of the volume (and 5-8% of the mass) of the universe can be ionized by z∼7–8. The UV production rate has an uncertainty of a factor of about 5 due to uncertainties in the cosmological parameters controlling the development of large scale structure. Because our mechanism is a steeply rising function of decreasing redshift, this uncertainty translates to a re-ionization redshift uncertainty of less than ±0.5. We also find that, even without including the UV photon production of stars, re-ionization is essentially complete by z∼5.8. Thus, fast accretion shocks can provide an important additional source of ionizing photons in the early universe.  相似文献   
43.
After the discovery of more than 400 planets beyond our Solar System, the characterization of exoplanets as well as their host stars can be considered as one of the fastest growing fields in space science during the past decade. The characterization of exoplanets can only be carried out in a well coordinated interdisciplinary way which connects planetary science, solar/stellar physics and astrophysics. We present a status report on the characterization of exoplanets and their host stars by reviewing the relevant space- and ground-based projects. One finds that the previous strategy changed from space mission concepts which were designed to search, find and characterize Earth-like rocky exoplanets to: A statistical study of planetary objects in order to get information about their abundance, an identification of potential target and finally its analysis. Spectral analysis of exoplanets is mandatory, particularly to identify bio-signatures on Earth-like planets. Direct characterization of exoplanets should be done by spectroscopy, both in the visible and in the infrared spectral range. The way leading to the direct detection and characterization of exoplanets is then paved by several questions, either concerning the pre-required science or the associated observational strategy.  相似文献   
44.
45.
For two reasons it is important to study the sensitivity of the global climate to changes in the vegetation cover over land. First, in the real world, changes in the vegetation cover may have regional and global implications. Second, in numerical simulations, the sensitivity of the simulated climate may depend on the specific parameterization schemes employed in the model and on the model's large-scale systematic errors. The Max-Planck-Institute's global general circulation model ECHAM4 has been used to study the sensitivity of the local and global climate during a full annual cycle to deforestation and afforestation in the Mediterranean region. The deforestation represents an extreme desertification scenario for this region. The changes in the afforestation experiment are based on the pattern of the vegetation cover 2000 years before present when the climate in the Mediterranean was more humid. The comparison of the deforestation integration to the control shows a slight cooling at the surface and reduced precipitation during the summer as a result of less evapotranspiration of plants and less evaporation from the assumption of eroded soils. There is no significant signal during the winter season due to the stronger influence of the mid-latitude baroclinic disturbances. In general, the results of the afforestation experiment are opposite to those of the deforestation case. A significant response was found in the vicinity of grid points where the land surface characteristics were modified. The response in the Sahara in the afforestation experiment is in agreement with the results from other general circulation model studies.  相似文献   
46.
Gerhard Wurm  Oliver Krauss 《Icarus》2006,180(2):487-495
The high concentration and sorting of chondrules, sub-mm sized spherules found in undifferentiated meteorites, is one of the great unsolved mysteries in planetology. Here we present a unifying explanation for these phenomena based on the assumption that chondrules were present when the Solar Nebula was optically thin but had a significant amount of gas. An immediate consequence is that chondrules feel a force known as photophoresis. Photophoresis is based on a temperature gradient over the surface of a particle resulting from absorption of radiation and non-uniform interaction with its gaseous environment. In comparison to well-known forces originating from starlight, i.e. radiation pressure, Poynting-Robertson drag, or the Yarkovski effect, photophoresis can be stronger by many orders of magnitude in gaseous environments. In the application discussed here photophoresis concentrates chondrules and CAIs, which are both found in chondrites, in the region of the asteroid belt. Chondrules from any place in the Solar Nebula will be dragged to the asteroid belt region, while smaller dust particles and their aggregates will be removed from this region at the same time. This leads to a high relative concentration of chondrules, sorted with respect to their thermal conductivity, density, and size, for building chondrite parent bodies. Furthermore, photophoresis prevents CAIs from being lost to the Sun.  相似文献   
47.
We study central collisions between millimeter-sized dust projectiles and centimeter-sized dust targets in impact experiments. Target and projectile are dust aggregates consisting of micrometer-sized SiO2 particles. Collision velocities range up to 25 m/s. The general outcome of a collision strongly depends on the impact velocity. For collisions below 13 m/s rebound and a small degree of fragmentation occur. However, at higher collision velocities up to 25 m/s approximately 50% of the mass of the projectile rigidly sticks to the target after the collision. Thus, net growth of a body is possible in high speed collisions. This supports the idea that planetesimal formation via collisional growth is a viable mechanism at higher impact velocities. Within our set of parameters the experiments even suggest that higher impact velocities might be preferable for growth in collisions between dusty bodies. For the highest impact velocities most of the ejecta is within small dust aggregates about 500 μm in size. In detail the size distribution of ejected dust aggregates is flat for very small particles smaller than 500 μm and follows a power law for larger ejected dust aggregates with a power of −5.6±0.2. There is a sharp upper cut-off at about 1 mm in size with only a few particles being slightly larger. The ejection angle is smaller than 3° with respect to the target surface. These fast ejecta move with 40±10% of the impact velocity.  相似文献   
48.
CM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C-complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C-complex asteroids including Bennu.  相似文献   
49.
Development of a long-living Cb cloud in the desert part of Saudi Arabia on April 10, 2008 is analyzed. Continuous satellite and radar observations of the cloud are carried out during five hours. Numerical modeling of the cloud is performed using a nonstationary 1.5-dimensional model. Data on the Cb cloud and its anvil development dynamics are obtained. It is shown that the anvil characteristics differ significantly in the zone of its formation directly over the cloud and when moving away from it. It is pointed out that the radar underestimates the anvil sizes. Estimation of precipitation rate from the cloud under study by means of satellite and radar measurements is compared against the results of numerical modeling. It is found that precipitation rate could reach 100 mm/h. The radar estimates of the precipitation rate are significantly overstated, which is, in this case, due to presence of large hail particles.  相似文献   
50.
Analysis of quantitative and qualitative composition of rare phytoplankton species was performed using a data set collected over a large geographic area (four eutrophic gulfs of the Aegean Sea, E. Mediterranean Sea) during 2002–2003. We examined the effects of excluding rare species on comparisons of species richness, diversity, similarity and niche breadth as well as the regional and seasonal contribution of rare species to cell abundance and carbon biomass. Overall, the total of 401 species included 182 rare species contributing 45.1% of the total species number. However, there was a considerable variation in this relationship among the other parameters, as rare species contributed only 6.4% of total cell abundance, 13.1% of total species diversity, 21.2% of total cell biovolume and 16.6% of total carbon biomass. The results showed that rarity may be a significant issue in studies detecting and quantifying phytoplankton community structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号